Математическая теория формальных языков

       

Конечные автоматы


Два наиболее распространенных способа конечного задания формального языка - это грамматики и автоматы. Автоматами в данном контексте называют математические модели некоторых вычислительных устройств. В этой лекции рассматриваются конечные автоматы, соответствующие в иерархии Хомского праволинейным грамматикам. Более сильные вычислительные модели будут определены позже, в лекциях 10, 14 и 15. Термин "автоматный язык" закреплен за языками, распознаваемыми именно конечными автоматами, а не какими-либо более широкими семействами автоматов (например, автоматами с магазинной памятью или линейно ограниченными автоматами).

В разделе 2.1 определяются понятия конечного автомата (для ясности такой автомат можно называть недетерминированным конечным автоматом) и распознаваемого конечным автоматом языка. В следующем разделе дается другое, но эквивалентное первому определение языка, распознаваемого конечным автоматом. Оно не является необходимым для дальнейшего изложения, но именно это определение поддается обобщению на случаи автоматов других типов.

В разделе 2.3 доказывается, что тот же класс автоматных языков можно получить, используя лишь конечные автоматы специального вида (они читают на каждом такте ровно один символ и имеют ровно одно начальное состояние). Во многих учебниках конечными автоматами называют именно такие автоматы.

Целую серию классических результатов теории формальных языков составляют теоремы о точном соответствии некоторых классов грамматик некоторым классам автоматов. Первая теорема из этой серии, утверждающая, что праволинейные грамматики порождают в точности автоматные языки, доказывается в разделе 2.4.

Другая серия результатов связана с возможностью сузить некоторый класс грамматик, не изменив при этом класс порождаемых ими языков. Обычно в таком случае грамматики из меньшего класса называются грамматиками в нормальной форме. В разделе 2.5*

формулируется результат такого типа для праволинейных грамматик. Сама эта теорема не представляет большого интереса, но аналогичные результаты, доказываемые позже для контекстно-свободных грамматик, используются во многих доказательствах и алгоритмах.

Не все конечные автоматы подходят для конструирования распознающих устройств, пригодных для практических приложений, так как в общем случае конечный автомат не дает точного указания, как поступать на очередном шаге, а разрешает продолжать вычислительный процесс несколькими способами. Этого недостатка нет у детерминированных конечных автоматов (частного случая недетерминированных конечных автоматов), определенных в разделе 2.6. В разделе 2.7 доказывается, что каждый автоматный язык задается некоторым детерминированным конечным автоматом.



Содержание раздела