12. |
xi |
-25.0 |
-23.0 |
-21.0 |
-18.0 |
-17.2 |
-15.4 |
-14.0 |
||||||||||
yi |
0.76 |
0.74 |
0.61 |
0.58 |
0.84 |
0.92 |
1.22 |
|||||||||||
13. |
xi |
-4.0 |
-3.0 |
-2.0 |
-1.0 |
0.0 |
1.0 |
2.0 |
||||||||||
yi |
1.71 |
1.56 |
1.24 |
1.36 |
1.78 |
2.21 |
4.31 |
|||||||||||
14. |
xi |
-22.0 |
-20.0 |
-18.0 |
-16.0 |
-14.0 |
-12.0 |
-10.0 |
||||||||||
yi |
-2.26 |
-1.84 |
-1.92 |
-1.76 |
-1.56 |
-1.64 |
-1.34 |
|||||||||||
15. |
xi |
23.0 |
24.0 |
25.0 |
26.0 |
27.0 |
28.0 |
29.0 |
||||||||||
yi |
1.26 |
1.37 |
1.44 |
1.56 |
1.15 |
1.28 |
1.06 |
|||||||||||
16. |
xi |
30.0 |
33.0 |
35.0 |
37.0 |
39.0 |
41.0 |
43.0 |
||||||||||
yi |
-2.6 |
-3.7 |
-2.5 |
-4.3 |
-2.3 |
-5.6 |
-1.9 |
|||||||||||
17. |
xi |
44.0 |
45.0 |
46.0 |
47.0 |
48.0 |
49.0 |
50.0 |
||||||||||
yi |
2.24 |
3.46 |
5.36 |
1.89 |
1.76 |
1.54 |
2.12 |
|||||||||||
18. |
xi |
52.0 |
54.0 |
56.0 |
58.0 |
60.0 |
62.0 |
64.0 |
||||||||||
yi |
-1.28 |
-1.33 |
-1.44 |
-1.67 |
-1.77 |
-2.81 |
-2.16 |
|||||||||||
19. |
xi |
2.2 |
2.6 |
3.0 |
3.4 |
3.8 |
4.2 |
4.6 |
||||||||||
yi |
1.88 |
1.65 |
1.61 |
1.73 |
1.56 |
1.24 |
1.99 |
|||||||||||
20. |
xi |
5.1 |
5.3 |
5.5 |
5.7 |
5.9 |
6.1 |
6.3 |
||||||||||
yi |
-2.8 |
-3.6 |
-5.7 |
-3.4 |
-1.9 |
-1.7 |
-1.5 |
|||||||||||
21. |
xi |
7.15 |
7.35 |
7.55 |
7.75 |
7.95 |
8.15 |
8.35 |
||||||||||
yi |
-2.2 |
-3.6 |
-1.7 |
-2.8 |
-1.6 |
-4.5 |
-2.2 |
|||||||||||
22. |
xi |
9.1 |
9.2 |
9.3 |
9.4 |
9.5 |
9.6 |
9.7 |
||||||||||
yi |
1.48 |
1.16 |
2.08 |
1.96 |
1.81 |
2.31 |
5.61 |
|||||||||||
23. |
xi |
-10.2 |
-10.1 |
-10.0 |
-9.9 |
-9.8 |
-9.7 |
-9.6 |
||||||||||
yi |
-6.5 |
-7.8 |
-10.2 |
-5.4 |
-4.6 |
-9.5 |
-10.3 |
|||||||||||
24. |
xi |
11.0 |
14.0 |
17.0 |
20.0 |
23.0 |
26.0 |
29.0 |
||||||||||
yi |
1.2 |
1.6 |
1.9 |
1.1 |
1.16 |
1.24 |
1.36 |
|||||||||||
25. |
xi |
-50.0 |
-48.0 |
-46.0 |
-44.0 |
-42.0 |
-40.0 |
-38.0 |
||||||||||
yi |
1.23 |
1.32 |
1.57 |
1.19 |
1.16 |
1.10 |
2.28 |
|||||||||||
26. |
xi |
-36.0 |
-34.0 |
-32.0 |
-30.0 |
-28.0 |
-26.0 |
-24.0 |
||||||||||
yi |
1.1 |
1.3 |
2.1 |
1.9 |
1.7 |
1.5 |
1.8 |
|||||||||||
27. |
xi |
21.0 |
23.0 |
24.0 |
28.0 |
31.0 |
32.0 |
36.0 |
||||||||||
yi |
1.24 |
1.37 |
1.56 |
1.64 |
1.84 |
1.26 |
1.14 |
|||||||||||
28. |
xi |
10.0 |
13.0 |
17.0 |
22.0 |
28.0 |
35.0 |
43.0 |
||||||||||
yi |
1.21 |
1.36 |
1.51 |
1.84 |
1.06 |
1.21 |
1.36 |
|||||||||||
29. |
xi |
-1.0 |
0.0 |
3.0 |
5.0 |
8.0 |
12.0 |
15.0 |
||||||||||
yi |
-2.1 |
-3.6 |
1.2 |
-4.3 |
1.8 |
2.6 |
-0.2 |
|||||||||||
30. |
xi |
-8.0 |
-7.0 |
-5.0 |
-3.0 |
-1.0 |
2.0 |
5.0 |
||||||||||
yi |
1.36 |
1.88 |
2.45 |
-2.1 |
-10.2 |
-4.4 |
1.16 |
![]() |
хi |
Метод Рунге-Кутта |
Точное решение |
0.0 |
1.0 |
1.0 |
0.1 |
1.2221 |
1.2221 |
0.2 |
1.4977 |
1.4977 |
0.3 |
1.8432 |
1.8432 |
0.4 |
2.2783 |
2.2783 |
0.5 |
2.8274 |
2.8274 |
0.6 |
3.5202 |
3.5202 |
0.7 |
4.3928 |
4.3928 |
0.8 |
5.4895 |
5.4895 |
0.9 |
6.8645 |
6.8645 |
1.0 |
8.5836 |
8.5836 |
№ п/п |
f(x,y) |
y0 |
1. |
![]() |
0.0 |
2. |
![]() |
0.1 |
3. |
![]() |
2.0 |
4. |
![]() |
0.3 |
5. |
![]() |
0.4 |
6. |
![]() |
0.0 |
7. |
![]() |
0.1 |
8. |
![]() |
0.2 |
9. |
![]() |
0.3 |
10. |
![]() |
0.4 |
11. |
![]() |
0.5 |
12. |
![]() |
0.0 |
13. |
![]() |
0.5 |
14. |
![]() |
0.4 |
15. |
![]() |
0.3 |
16. |
![]() |
0.2 |
17. |
![]() |
0.1 |
18. |
![]() |
0.0 |
19. |
![]() |
0.1 |
20. |
![]() |
0.2 |
21. |
![]() |
0.3 |
22. |
![]() |
0.4 |
23. |
![]() |
0.5 |
24. |
![]() |
0.6 |
25. |
![]() |
0.7 |
26. |
![]() |
0.0 |
27. |
![]() |
0.1 |
28. |
![]() |
0.2 |
29. |
![]() |
0.3 |
30. |
![]() |
0.4 |
№ п/п |
Подынтегральная функция f(x) |
Интервал интегрирования [a; b] |
Точность вычислений интеграла |
1 |
![]() |
[1; 3.5] |
0.001 |
2 |
![]() |
[p/6; [p/3] |
0.002 |
3 |
![]() |
[1.5; 3.] |
0.0001 |
4 |
![]() |
[1.0; 4,0] |
0.003 |
5 |
![]() |
[0; ln2] |
0.0015 |
6 |
![]() |
[1.0; 4.0] |
0.002 |
7 |
![]() |
[0.0; 2.0] |
0.001 |
8 |
![]() |
[2.0; 5.0] |
0.001 |
9 |
![]() |
[1.0; 2.5] |
0.0005 |
10 |
![]() |
[0.0; ![]() |
0.003 |
11 |
![]() |
[0.0; 3,0] |
0.001 |
12 |
![]() |
[1.5; 3.0] |
0.0025 |
13 |
![]() |
[0,0; 5.0] |
0.001 |
14 |
![]() |
[2.3; 6.0] |
0.002 |
15 |
![]() |
[0.0; p/2] |
0.001 |
16 |
![]() |
[0.0; 2.0] |
0.0015 |
17 |
![]() |
[0.0; 2.0] |
0.002 |
18 |
![]() |
[0.0; p/4] |
0.001 |
19 |
![]() |
[0.0; 1.8] |
0.0006 |
20 |
![]() |
[0.0; p] |
0.0016 |
21 |
![]() |
[0.0; 1.2] |
0.002 |
22 |
![]() |
[2.0; 4.4] |
0.0014 |
23 |
![]() |
[0.0; 1.2] |
0.002 |
24 |
![]() |
[2.0; 4.4] |
0.0011 |
25 |
![]() |
[1.0; 2.2] |
0.0023 |
26 |
![]() |
[0,0; 1.8] |
0.0015 |
27 |
![]() |
[0.0; 1.2] |
0.001 |
28 |
![]() |
[1.0; 3.0] |
0.002 |
29 |
![]() |
[0.0; 1.0] |
0.0013 |
30 |
![]() |
[1.0; 2.2] |
0.0025 |
![]() |
№ п/п |
Уравнение f(x) = 0 |
Отрезок [a; b] |
1 |
![]() |
[1.0; ![]() |
2 |
![]() |
[2.0; 3.0] |
3 |
![]() |
[8.0; 9.0] |
4 |
![]() |
[0.5; 1.0] |
5 |
![]() |
[0.0; 1.0] |
6 |
![]() |
[3.0; 3.2] |
7 |
![]() |
[0.0; 1.0] |
8 |
![]() |
[0.0; 0.2] |
9 |
![]() |
[0.8; 1.0] |
10 |
![]() |
[2.6; 3.0] |
11 |
![]() |
[1.0; 1.5] |
12 |
![]() |
[1.0; 2.0] |
13 |
![]() |
[0.0; 1.0] |
14 |
![]() |
[0.0; 1.0] |
15 |
![]() |
[3.0; 4.0] |
16 |
![]() |
[1.0; 1.2] |
17 |
![]() |
[1.0; 2.0] |
18 |
![]() |
[0.0; 1.0] |
19 |
![]() |
[-0.2; -0.1] |
20 |
![]() |
[0.1; 0.9] |
21 |
![]() |
[1.0; 1.4] |
22 |
![]() |
[3.0; 4.0] |
23 |
![]() |
[0.0; 1.5] |
24 |
![]() |
[0.0; 1.0] |
25 |
![]() |
[0.1; 1.0] |
26 |
![]() |
[0.4; 0.6] |
27 |
![]() |
[3.0; 4.0] |
28 |
![]() |
[4.0; 5.0] |
29 |
![]() |
[2.0; 3.0] |
30 |
![]() |
[0.0; 0.48] |
![]() |
№ п/п |
Функция f(x) |
Отрезок [a; b] |
1 |
![]() |
[1.2; 4] |
2 |
![]() |
[0; p/2] |
3 |
![]() |
[-2; 2] |
4 |
![]() |
[-2; 2] |
5 |
![]() |
[1; 3] |
6 |
![]() |
[p; 3p/2] |
7 |
![]() |
[0; 1] |
8 |
![]() |
[0; 2] |
9 |
![]() |
[-0.5; 1.5] |
10 |
![]() |
[0,1; 1.0] |
11 |
![]() |
[-0.5; 0,5] |
12 |
![]() |
[-1.0; 0] |
13 |
![]() |
[-0.5; 0.5] |
14 |
![]() |
[0.5; 1.5] |
15 |
![]() |
[1.6; 2.2] |
16 |
![]() |
[1; 2] |
17 |
![]() |
[1.1; 1.6] |
18 |
![]() |
[0; p/3] |
19 |
![]() |
[0.5; 1.2] |
20 |
![]() |
[-1.5; -0.5] |
21 |
![]() |
[-2.0; -1.0] |
22 |
![]() |
[-2.0; -1.0] |
23 |
![]() |
[0.1; 1.0] |
24 |
![]() |
[-0,05; -0.2] |
25 |
![]() |
[-0.5; 0.5] |
26 |
![]() |
[p; 3p/2] |
27 |
![]() |
[1.0; 2.0] |
28 |
![]() |
[0.1; 0.5] |
29 |
![]() |
[p; 2p] |
30 |
![]() |
[2.0; 3.0] |
№ п/п |
Функция f(x, у) |
Координаты начальной точки М0 (х0, у0). |
1 |
2 |
3 |
1 |
![]() |
(1; 1) |
2 |
![]() |
(2; 2) |
3 |
![]() |
(2; 2) |
4 |
![]() |
(2; 2) |
5 |
![]() |
(2; 2) |
6 |
![]() |
(2; 2) |
7 |
![]() |
(2; 2) |
8 |
![]() |
(2; 2) |
9 |
![]() |
(2; 2) |
1 |
2 |
3 |
10 |
![]() |
(2; 2) |
11 |
![]() |
(0.5; 0.5) |
12 |
![]() |
(0.5; 3.5) |
13 |
![]() |
(0; 0) |
14 |
![]() |
(0.1; -1.0) |
15 |
![]() |
(4; 1) |
16 |
![]() |
(0.5; 2.5) |
17 |
![]() |
(1.5; 0.5) |
18 |
![]() |
(0.5; 0.5) |
19 |
![]() |
(0.3; 0.3) |
20 |
![]() |
(0.25; 0.25) |
21 |
![]() |
(0.5; 1.5) |
22 |
![]() |
(0.5; 0.5) |
23 |
![]() |
(-1.5; 0.5) |
24 |
![]() |
(1.0; 1.0) |
25 |
![]() |
(2.0; 1.5) |
26 |
![]() |
(0.2; 0.3) |
27 |
![]() |
(p/4; p/4) |
28 |
![]() |
(p/4; p/4) |
29 |
![]() |
(2.5; 2.5) |
30 |
![]() |
(1.0; -1.0) |
EIn(x) |
= |
A11 |
A12 |
-A13 |
-A14 |
|
EIn(o) |
+ ![]() |
A14(x-x) |
q(x)dx , |
(3.3) |
EIj(x) |
A21 |
A22 |
-A23 |
-A24 |
|
EIj(o) |
A24(x-x) |
||||
M(x) |
-A31 |
-A32 |
A33 |
A34 |
|
M(o) |
-A34(x-x) |
||||
Q(x) |
-A41 |
-A42 |
A43 |
A44 |
|
Q(o) |
-A44(x-x) |
А= |
А1 |
|
|
|
|
; Y = |
Y1 |
; X = |
X1 |
; B = |
B1 |
(3.5) |
|
А2 |
|
|
|
Y2 |
X2 |
B2 |
|||||
|
|
O |
|
|
M |
M |
M |
|||||
|
|
|
Аn-1 |
|
Yn-1 |
Xn-1 |
Bn-1 |
|||||
|
|
|
|
Аn |
Yn |
Xn |
Bn |
|
i |
j |
k |
l |
|
|
- |
|
|
(3.7) , |
![]() ![]() |
|
![]() |
![]() |
![]() |
Xi1=0;Yk1 |
i |
Yi1=0 |
|||
j |
|
1 |
![]() |
![]() |
Xj1 |
j |
Yj1=0 |
|||
![]() |
-a |
|
1 |
![]() |
Xk1 |
k |
аYk1 |
|||
l |
|
|
|
1 |
Xl1 |
l |
Yl1=0 |
|
i |
j |
k |
l |
|
|
- |
|
|
(3.8) . |
![]() ![]() |
-a |
b |
|
|
Xi1= 0;Yl1 |
i |
Yi1 = aYl1 - bХj1 |
|||
j |
|
|
|
|
Xj1 |
j |
Yj1 = 0 |
|||
k |
|
|
|
|
Xk1 |
k |
Yk1 = 0 |
|||
l |
-1 |
|
|
|
Xl1 |
l |
Yl1 |
![]() |
|
i |
j |
k |
l |
|
|
; |
|
![]() ![]() |
1 |
![]() |
![]() |
![]() |
Xi1 |
|||
j |
|
1 |
![]() |
![]() |
Xj1 |
|||
![]() |
|
|
1 |
![]() |
Xk1=а Xi1 |
|||
l |
|
|
|
1 |
Xl1 |
|
i |
j |
k |
l |
|
|
|
i |
1![]() |
![]() |
|
![]() |
Xi1 |
|
|
j |
-al |
1 |
|
![]() |
Xj1 |
|
|
k |
a |
|
|
![]() |
|
|
|
l |
|
|
|
1 |
Xl1 |
. |
![]() |
![]() |
![]() |
![]() |
||||
b(1,1) = |
-M* (l – am)^2/2; |
b(1,1) = |
-F* (l –af)^3/6; |
b(1,1) = |
-q*l^4/24; |
(3.10) |
b(2,1) = |
-M* (l – am); |
b(2,1) = |
-F* (l –af)^2/2; |
b(2,1) = |
-q*l^3/6; |
|
b(3,1) = |
M; |
b(3,1) = |
F* (l –af); |
b(3,1) = |
q*l^2/2; |
|
b(4,1) = |
O; |
b(4,1) = |
F |
b(4,1) = |
q*l. |
![]() |
(3.11) |
% Описание матрицы а(16,16); b(16,1) и Х(16,1); |
а = zeros(16,16); ); b = zeros (16,1); Х = zeros (16,1); |
% Исходные данные расчета балки |
l1 = 4.0; l2 = 6.0; l3 = 3.0; l4 = 1.0; m = 20.0; q = 10.0; |
f1 = - 40.0; f2 = 60.0; am = 2.0; af1 = 2.0; af2 = 1.0; |
% Ввод матриц а(16,16) и b(16,1) с помощью операторов присваивания; |
a(1,2) = l1; a(1,4) = -l1^3/6; b(1,1) = -m*(l1-am)^2/2; |
a(2,2) = 1.0; a(2,4) = -l1^2/2; a(2,6) = -1.0; b(2,1) = -m*(l1-am); |
a(3,4) = l1; a(3,7) = -1.0; b(3,1) = m; a(4,1) = -1.0; a(4,4) = 1.0; |
a(5,6) = l2; a(5,7) = -l2^2/2; a(5,8) = -l2^3/6; b(5,1) = -q*l2 ^4/24; |
a(6,6) = 1.0; a(6,7) = -l2; a(6,8) = -l2^2/2; a(6,10) = -1.0; |
b(6,1) = -q*l2 ^3/6; a(7,7) = 1.0; a(7,8) = l2; a(7,11) = -1.0; |
b(7,1) = q*l2^2/2; a(8,3) = -1.0; a(8,8) = 1.0; b(8,1) = q*l2; |
a(9,10) = l3; a(9,11) = -l3^2/2; a(9,12) = -l3^3/6; |
b(9,1) = -f1*(l3-af1)^3/6; a(10,10) = 1.0; a(10,11) = -l3; |
a(10,12) = -l1^2/2; a(10,14) = -1.0; b(10,1) = -f1*(l3-af1)^2/2; |
a(11,11) = 1.0; a(11,12) = l3; a(11,15) = -1.0; b(11,1) = f1*(l3-af1); |
a(12,5) = -1.0; a(12,12) = 1.0; ; b(12,1) = f1; a(13,9) = -1.0; |
a(13,14) = l4; a(13,15) = -l4^2/2; a(13,16) = -l4^3/6; |
b(13,1) = -f2*(l4-af2)^3/6; a(14,13) = -1.0; a(14,14) = 1.0; |
a(14,15) = -l4; a(14,16) = -l4^2/2; b(14,1) = -f2*(l4-af2)^2/2; |
a(15,15) = -1.0; a(15,16) = l4; b(15,1) = f2*(l4-af2); a(16,16) = 1.0; |
b(16,1) = f2; |
% Решение системы уравнений ах = b и вывод результатов |
Х = a\ b |
1 |
![]() |
9 |
![]() |
2 |
![]() |
10 |
![]() |
3 |
![]() |
11 |
![]() |
4 |
![]() |
12 |
![]() |
5 |
![]() |
13 |
![]() |
6 |
![]() |
14 |
![]() |
7 |
![]() |
15 |
![]() |
8 |
![]() |
16 |
![]() |
![]() |
![]() |
; |
![]() |
(3.14) |
|||||
Аi = |
A11 |
A12 |
-A13 |
-A14 |
|||
l4A14 |
A11 |
-A12 |
-A13 |
||||
-l4A13 |
-l4A14 |
A11 |
A12 |
||||
-l4A12 |
-l4A13 |
l4A14 |
A11 |
||||
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
|
3-4 |
2-3 |
1-2 |
0-1 |
![]() |
![]() |
(3.16) |
№ п/п |
Граничные параметры балки |
Относительные значения граничных параметров при частотах |
||||
w1=0,4055125 |
w2=0,7818475 |
w3=1,1001125 |
w4=1,4852935 |
w5=2,4234325 |
||
1 |
![]() |
0.1677 |
- 3.5779 |
0.3375 |
- 0.4569 |
- 0.9724 |
2 |
![]() |
- 1.4419 |
3.5754 |
- 0.2308 |
0.3784 |
- 0.4260 |
3 |
![]() |
- 1.6643 |
- 1.3379 |
- 0.0981 |
1.8113 |
0.9831 |
4 |
![]() |
- 0.6979 |
2.6728 |
- 0.2409 |
0.5453 |
- 1.0318 |
5 |
![]() |
0.6626 |
0.6263 |
0.5250 |
0.2441 |
- 1.6235 |
6 |
![]() |
2.2068 |
- 1.8784 |
- 0.0844 |
0.4282 |
- 0.4491 |
7 |
![]() |
- 1.1280 |
- 2.3814 |
0.4101 |
- 0.8967 |
0.0745 |
8 |
![]() |
1.5705 |
0.6324 |
- 0.5215 |
1.7308 |
- 1.2045 |
9 |
![]() |
1.0000 |
1.0000 |
1.0000 |
1.0000 |
1.0000 |
10 |
![]() |
- 1.7388 |
- 1.1200 |
- 0.4732 |
0.2324 |
0.5331 |
11 |
![]() |
- 1.5543 |
- 0.5464 |
0.4042 |
1.2018 |
- 0.1983 |
12 |
![]() |
0.3185 |
- 0.4130 |
- 0.9820 |
- 1.1665 |
1.5478 |
13 |
![]() |
1.0055 |
1.0203 |
1.0400 |
1.0723 |
1.1873 |
14 |
![]() |
0.9850 |
0.9443 |
0.8905 |
0.8024 |
0.4932 |
15 |
![]() |
- 0.0547 |
- 0.2021 |
- 0.3971 |
- 0.7145 |
- 1.8141 |
16 |
![]() |
0.0819 |
0.3020 |
0.5910 |
1.0566 |
2.6174 |
![]() |
![]() |
![]() |
![]() |
(3.18) |
Рис. 3.8 |
||
![]() |
![]() |
(3.19) |
Рис. 3.9 |
||
![]() |
![]() |
![]() |
(3.20) |
Рис. 3.10 |
Х = |
1 |
Х(1,1) = ![]() |
2 |
Х(2,1) =![]() |
|
3 |
Х(3,1) = ![]() |
|
4 |
Х(4,1) =![]() |
|
5 |
Х(5,1) =![]() |
|
6 |
Х(6,1) = ![]() |
|
7 |
Х(7,1) = ![]() |
|
8 |
Х(8,1) = ![]() |
|
9 |
Х(9,1) = ![]() |
|
10 |
Х(10,1) = ![]() |
|
11 |
Х(11,1) = ![]() |
|
12 |
Х(12,1) = ![]() |
|
13 |
Х(13,1) = ![]() |
|
14 |
Х(14,1) = ![]() |
|
15 |
Х(15,1) = ![]() |
|
16 |
Х(16,1) = ![]() |
![]() |
(3.21) |
![]() |
![]() |
(3.22) |
![]() |
![]() |
(3.22) |
![]() |
- единичная функция Хевисайда. |
![]() |
![]() |
(3.23) |
|||||||||||
Аi = |
1 |
A12 |
-A13 |
-A14 |
|
|||||||
|
A22 |
-A12 |
-A13 |
|
||||||||
|
-A32 |
A22 |
A12 |
|
||||||||
|
|
|
1 |
|
||||||||
1 |
||||||||||||
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
|
3-4 |
2-3 |
1-2 |
0-1 |
![]() |
(3.25) |
№ п/п |
Относительные граничные параметры балки |
Относительные формы потери устойчивости при критических силах |
||||
F1=0,443685 |
F2=0,6525565 |
F3=1,051035 |
F4=1,618795 |
F5=2,430485 |
||
1 |
![]() |
-0.05447 |
-0.0103 |
0.2820 |
-0.5033 |
0.0329 |
2 |
![]() |
-0.5915 |
0.5841 |
-1.6119 |
2.0126 |
-1.8039 |
3 |
![]() |
-0.0026 |
0.0659 |
-0.0127 |
0.5231 |
-0.0775 |
4 |
![]() |
-0.0547 |
-0.0103 |
0.2820 |
-0.5033 |
0.0329 |
5 |
![]() |
0.0697 |
-0.3356 |
-0.7009 |
-0.9147 |
-0.6990 |
6 |
![]() |
0.7580 |
-0.5503 |
0.5032 |
0.9372 |
-1.8019 |
7 |
![]() |
-0.2186 |
-0.0411 |
1.1278 |
-2.0131 |
0.1316 |
8 |
![]() |
-0.0026 |
0.0659 |
-0.0127 |
0.5231 |
-0.0775 |
9 |
![]() |
1.0000 |
1.0000 |
1.0000 |
1.0000 |
1.0000 |
10 |
![]() |
-0.7352 |
-0.2117 |
0.6437 |
1.4961 |
1.8552 |
11 |
![]() |
-0.2345 |
0.3542 |
1.0518 |
1.1254 |
-0.3335 |
12 |
![]() |
-0.0697 |
-0.3356 |
-0.7009 |
-0.9147 |
-0.6990 |
13 |
![]() |
1.0780 |
1.1177 |
1.1993 |
1.3312 |
1.5591 |
14 |
![]() |
0.8475 |
0.7724 |
0.6224 |
0.3914 |
0.0184 |
15 |
![]() |
-0.4437 |
-0.6526 |
-1.0510 |
-1.6189 |
-2.4305 |
16 |
![]() |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
![]() |
1 |
2 |
![]() |
![]() |
3 |
4 |
![]() |
![]() |
5 |
6 |
![]() |
![]() |
7 |
8 |
![]() |
![]() |
9 |
10 |
![]() |
![]() |
11 |
12 |
![]() |
![]() |
13 |
14 |
![]() |
![]() |
15 |
16 |
![]() |
![]() |
17 |
18 |
![]() |
![]() |
19 |
20 |
![]() |
![]() |
21 |
22 |
![]() |
![]() |
23 |
24 |
![]() |
![]() |
25 |
26 |
![]() |
![]() |
27 |
28 |
![]() |
![]() |
29 |
30 |
![]() |
![]() |
№ варианта заданий |
![]() |
![]() |
![]() |
![]() |
a |
b |
c |
F |
F1 |
F2 |
M |
M1 |
M2 |
q |
q1 |
q2 |
м |
кН |
кНм |
кН/м |
|||||||||||||
1 |
2 |
3 |
3 |
1 |
1 |
2 |
1 |
10 |
20 |
30 |
6 |
8 |
10 |
10 |
12 |
8 |
2 |
2 |
4 |
4 |
2 |
2 |
1 |
2 |
40 |
50 |
60 |
10 |
8 |
6 |
8 |
15 |
6 |
3 |
4 |
3 |
5 |
1,5 |
3 |
3 |
1,5 |
5 |
15 |
20 |
20 |
30 |
40 |
6 |
10 |
12 |
4 |
5 |
6 |
6 |
3 |
2 |
2 |
3 |
25 |
35 |
45 |
25 |
36 |
38 |
4 |
8 |
6 |
5 |
6 |
8 |
7 |
2,5 |
1 |
1 |
1 |
10 |
8 |
6 |
12 |
6 |
18 |
2 |
4 |
3 |
6 |
7 |
5 |
8 |
1 |
3 |
2,5 |
1,5 |
10 |
15 |
25 |
15 |
20 |
25 |
12 |
2 |
7 |
7 |
6 |
4 |
7 |
1,5 |
1 |
1,5 |
2,5 |
30 |
40 |
50 |
40 |
35 |
16 |
20 |
8 |
10 |
8 |
5 |
3 |
6 |
2 |
2 |
2 |
1,5 |
60 |
70 |
80 |
10 |
15 |
20 |
15 |
12 |
15 |
9 |
4 |
4 |
5 |
1 |
1,5 |
1 |
2 |
30 |
15 |
18 |
25 |
30 |
35 |
12 |
2 |
5 |
10 |
3 |
6 |
4 |
1,5 |
3 |
1,5 |
1 |
28 |
32 |
24 |
40 |
45 |
50 |
8 |
4 |
10 |
11 |
2,5 |
5 |
5 |
1 |
2 |
1,5 |
1,5 |
12 |
14 |
16 |
10 |
18 |
28 |
6 |
8 |
15 |
12 |
4 |
8 |
3 |
2,8 |
1 |
1,5 |
2 |
5 |
15 |
10 |
40 |
12 |
10 |
10 |
12 |
2 |
13 |
3 |
10 |
4 |
4 |
1 |
2 |
2 |
3 |
22 |
30 |
10 |
14 |
16 |
18 |
12 |
14 |
14 |
5 |
4 |
5 |
2 |
1 |
1,5 |
1,6 |
40 |
24 |
26 |
20 |
30 |
35 |
10 |
30 |
15 |
15 |
2 |
5 |
6 |
1,5 |
1,7 |
1,5 |
1,2 |
15 |
10 |
8 |
15 |
18 |
20 |
5 |
20 |
10 |
16 |
2 |
6 |
3 |
1 |
0,8 |
1,4 |
1,0 |
10 |
20 |
30 |
6 |
8 |
10 |
10 |
12 |
8 |
17 |
3 |
7 |
4 |
5 |
2 |
1 |
2 |
40 |
50 |
60 |
10 |
8 |
6 |
8 |
15 |
6 |
18 |
4 |
5 |
5 |
1,5 |
3 |
3 |
1,5 |
5 |
15 |
20 |
20 |
30 |
40 |
6 |
10 |
12 |
19 |
5 |
3 |
6 |
3 |
2 |
2 |
1,5 |
25 |
35 |
45 |
25 |
36 |
38 |
4 |
8 |
6 |
20 |
6 |
5 |
5 |
2,5 |
1 |
1 |
1 |
10 |
8 |
6 |
12 |
6 |
18 |
2 |
4 |
3 |
21 |
7 |
4 |
7 |
1 |
3 |
1,5 |
1,5 |
10 |
25 |
35 |
15 |
20 |
25 |
12 |
2 |
7 |
22 |
6 |
8 |
6 |
1,5 |
1 |
2 |
2,5 |
30 |
40 |
50 |
40 |
35 |
16 |
20 |
8 |
10 |
23 |
5 |
6 |
5 |
2 |
2 |
2 |
1,2 |
60 |
70 |
80 |
10 |
15 |
20 |
15 |
12 |
15 |
24 |
4 |
7 |
4 |
1 |
1,5 |
1 |
2 |
30 |
15 |
18 |
25 |
30 |
35 |
12 |
2 |
5 |
25 |
3 |
5 |
3 |
1,5 |
3 |
1,5 |
1 |
28 |
32 |
24 |
40 |
45 |
50 |
8 |
4 |
10 |
26 |
2 |
4 |
4 |
1 |
1,3 |
1,4 |
1,5 |
12 |
14 |
16 |
10 |
18 |
28 |
6 |
8 |
15 |
27 |
4 |
6 |
3 |
2 |
1 |
1,5 |
1,7 |
5 |
15 |
10 |
40 |
12 |
10 |
10 |
12 |
2 |
28 |
3 |
5 |
4 |
4 |
1 |
2 |
2 |
3 |
22 |
30 |
10 |
14 |
16 |
18 |
12 |
14 |
29 |
5 |
4 |
5 |
2 |
1 |
1,5 |
1,5 |
40 |
24 |
26 |
20 |
30 |
35 |
10 |
30 |
15 |
30 |
2 |
3 |
6 |
4 |
1,5 |
2 |
1 |
15 |
10 |
8 |
15 |
18 |
20 |
5 |
20 |
10 |
![]() |