Основы теории нечетких множеств


         

Аналогичные свойства могут быть определены



Аналогичные свойства могут быть определены как -свойства для различных -уровней отношения .

В отличие от первых трех свойств, остальные свойства более специфичны для нечетких отношений и в большей мере учитывают согласованность силы отношения между элементами множества . Для этих свойств также могут быть сформулированы -свойства.

Частным случаем сильного порядка (порядка, удовлетворяющего условию сильной транзитивности) является метрический порядок. Для асимметричных отношений условие метрической транзитивности эквивалентно неравенству треугольника.

Условие квазисерийности определяет нечеткую квазисерию. Каждый -уровень нечеткой квазисерии является обыкновенной квазисерией, т.е. удовлетворяет условиям

Поскольку обычная квазисерия определяет разбиение множества

на упорядоченные классы эквивалентности, нечеткая квазисерия определяет разбиение множества

на упорядоченные классы эквивалентности на каждом -уровне. Эти разбиения вложены друг в друга; таким образом, нечеткая квазисерия определяет иерархию разбиений множества на упорядоченные классы эквивалентности.

Частным случаем метрических порядков, помимо квазисерии, является

линейный порядок
, определяемый условием линейной транзитивности. Линейный порядок при интерпретации как силы предпочтения альтернативы над альтернативой

задает на множестве альтернатив некоторую аддитивную функцию полезности, которая может быть определена на , например, с помощью соотношения .

Ультраметрическая транзитивность построена по аналогии с метрической транзитивностью, однако для антисимметричных отношений она не эквивалентна ультраметрическому неравенству .

Между строгими порядками (асимметричными отношениями) и слабыми порядками (рефлексивными отношениями) существует тесная связь. Эти порядки могут быть получены друг из друга с помощью ряда преобразований.

Если на задана операция дополнения, т.е. такая унарная операция , что на

выполняются тождества то на множестве нечетких отношений может быть задана операция дополнения следующим образом:


Содержание  Назад  Вперед